

II-354 – ANÁLISE DAS CARACTERÍSTICAS HIDRODINÂMICAS EM REATOR DO TIPO UASB EM DIFERENTES CONDIÇÕES OPERACIONAIS VERIFICANDO A INFLUÊNCIA DA GERAÇÃO DE BIOGÁS

Aline Yumi Hattori⁽¹⁾

Engenheira Ambiental pela Universidade Tecnológica Federal do Paraná (UTFPR). Mestranda em Ciência e Tecnologia Ambiental pela Universidade Tecnológica Federal do Paraná (UTFPR).

Cristiane Kreutz⁽²⁾

Tecnóloga Ambiental pela Universidade Tecnológica Federal do Paraná (UTFPR). Mestre e Doutora em Engenharia Agrícola pela Universidade Estadual do Oeste do Paraná (UNIOESTE). Docente do Departamento Acadêmico de Ambiental da Universidade Tecnológica Federal do Paraná, câmpus Campo Mourão (UTFPR). **Flavio Bentes Freire**⁽³⁾

Engenheiro Civil pela Escola de Engenharia de São Carlos (EESC/USP). Mestre e Doutor em Hidráulica e Saneamento pela Escola de Engenharia de São Carlos (EESC/USP). Docente do Departamento Acadêmico de Construção Civil da Universidade Tecnológica Federal do Paraná, câmpus Curitiba (UTFPR).

Fernando Hermes Passig⁽⁴⁾

Engenheiro Sanitarista pela Universidade Federal de Santa Catarina (UFSC). Mestre e Doutor em Hidráulica e Saneamento pela Escola de Engenharia de São Carlos (EESC/USP). Docente do Departamento Acadêmico de Química e Biologia da Universidade Tecnológica Federal do Paraná, câmpus Curitiba (UTFPR).

Karina Querne de Carvalho⁽⁵⁾

Engenheira Civil pela Universidade Estadual de Maringá (UEM). Mestre e Doutora em Hidráulica e Saneamento pela Escola de Engenharia de São Carlos (EESC/USP). Docente do Departamento Acadêmico de Construção Civil da Universidade Tecnológica Federal do Paraná, câmpus Curitiba (UTFPR).

Endereço⁽¹⁾: Rua Deputado Heitor Alencar Furtado, 5000 - Cidade Industrial - Curitiba – PR - CEP: 81280-340 - Brasil - Tel: (41) 3272-4500 - e-mail: ayhattori@gmiail.com

RESUMO

Neste trabalho foi analisado o comportamento hidrodinâmico, as características hidráulicas de um reator tipo UASB (1 L) operado em diferentes condições e a influência da produção de biogás no regime de escoamento do reator por meio de análise estatística. O reator, confeccionado em *plexiglass*, foi operado com vazão de 4 L.d⁻¹ (0,166 L.h⁻¹) e TDH teórico de 6 h em duas etapas distintas: I sem simulação da geração de biogás. Nos ensaios hidrodinâmicos tipo pulso foi aplicada eosina Y como traçador. Aproximadamente 83% dos valores de TDH real (5,4 a 6,8 h) foram inferiores ao TDH teórico, provavelmente devido à ausência de obstáculos ao longo reator, movimentação ascensional das bolhas de biogás que impulsionaram o traçador e ocorrência de caminhos preferenciais e curtos-circuitos hidráulicos. Foram obtidos de 2 a 4 reatores de mistura completa em série, sendo o modelo N-CSTR em série com melhor ajuste dos dados experimentais. O volume de zonas mortas resultou em 10% e 3,3% nos ensaios 1 e 2 na Etapa I e em 8,3%, 6,7% e 10% nos ensaios 1, 2 e 3, respectivamente, na Etapa II. Foram verificados curtos-circuitos hidráulicos em todos os ensaios da Etapa II (de 0,08 a 0,09). Na Etapa I foram obtidos os melhores valores quanto às características hidrodinâmicas e hidráulicas. Além disso, concluiu-se que a produção de biogás não interfere significativamente no desempenho deste reator.

PALAVRAS-CHAVE: Anomalias, Eosina Y, Fenômeno de Cauda Longa Zonas Mortas, Modelos Uniparamétricos, Traçadores.

INTRODUÇÃO

A qualidade dos corpos hídricos e consequentemente o ecossistema aquático tem sofrido alterações negativas devido a sua exposição à diversos tipos de contaminação como lançamento inadequado de esgotos sanitários, efluentes industriais, composto químicos devido à acidentes por derramamento, percolação de agrotóxicos através de irrigação ou chuvas, dentre outros.

Com o crescimento populacional houve aumento significativo no consumo de água e consequentemente na geração de esgotos sanitários. A matéria orgânica presente em alguns destes resíduos, quando lançados de forma inadequada e sem tratamento prévio, tem contribuído para contaminação e eutrofização em corpos hídricos.

Na busca pelo desenvolvimento sustentável, houve avanço em estudos direcionados à criação e otimização de sistemas de tratamento de efluentes alternativos considerados eficazes e com menores custos de operação e manutenção.

Dentre as principais técnicas empregadas no Brasil, o uso do tratamento biológico, especificamente, de reatores anaeróbios de manta de lodo e fluxo ascendente (tipo UASB – *Upflow Anaerobic Sludge Blanket*) tem ocupado posição destaque devido às condições ambientais e climáticas favoráveis. Outros aspectos positivos neste tipo de sistema são: baixa produção de lodo, baixo requerimento de área, baixo custo de implantação, simplicidade de construção, operação e manutenção, redução no consumo de energia, possibilidade de aproveitamento do biogás gerado; capacidade de suportar sobrecargas orgânicas e hidráulicas, dentre outras (CHERNICHARO, 2007).

Um dos aspectos importantes a se considerar nestes sistemas é o comportamento hidrodinâmico da massa líquida em seu interior. O conhecimento da hidrodinâmica de reatores possibilita maior compreensão sobre a ocorrência de anomalias no escoamento que podem afetar significativamente o desempenho do sistema, tais como presença de zonas mortas, curtos-circuitos hidráulicos, caminhos preferenciais e recirculação interna (CARVALHO et al., 2008).

De acordo com Levenspiel (2000), o estudo hidrodinâmico consiste na aplicação da técnica de estímuloresposta que consiste na injeção do traçador na entrada do reator a taxa constante em um intervalo de tempo pré-estabelecido. Os traçadores são substâncias cuja presença do líquido no interior do reator pode ser detectada com precisão e cujas características permanecem inalteradas na unidade de tratamento (CASTRO, 2010).

Neste trabalho teve foi determinado o comportamento hidrodinâmico e hidráulico de um reator do tipo UASB abiótico em condições distintas de operação, sendo: etapa I sem simulação de biogás e a etapa II com geração de biogás.

MATERIAIS E MÉTODOS

O reator anaeróbio de manta de lodo e fluxo ascendente (UASB), em escala de bancada, foi confeccionado em *plexiglass* com 55 cm de altura, 4,8 cm de diâmetro interno e volume total de 1 L. O separador trifásico localizado na parte superior do reator foi confeccionado com o mesmo material, apresentando 3 cm de altura e 3,7 cm de diâmetro (Figura 1).

Figura 1. Desenho esquemático do reator do tipo UASB.

O sistema foi operado com vazão afluente de 4 L.d⁻¹ (0,166 L.h⁻¹) e TDH teórico de 6 h em duas condições distintas. A primeira condição correspondia ao reator abiótico alimentado apenas com água e operado sem simulação da geração de biogás (Etapa I) correspondendo a um sistema ideal; e a segunda condição (etapa II), com a operação com simulação da geração de biogás por um compressor de ar com vazão de 0,15 L.min⁻¹ (marca Junior Master) controlada por um fluxômetro (marca RWR). Em ambas as condições a alimentação foi realizada através de bomba dosadora solenóide da marca Prominent, modelo Conb 1201.

O procedimento adotado para análise do comportamento hidrodinâmico foi baseado em ensaios de estímuloresposta tipo pulso em triplicata utilizando eosina Y como traçador. As coletas das amostras foram realizadas manualmente em intervalos de 30 min com duração total de 18 h para cada ensaio. A duração total de cada ensaio correspondia a três vezes o tempo de detenção hidráulica teórico de 6 h. Após a realização dos ensaios, a concentração do traçador foi determinada pelo método colorimétrico de leitura de absorbância em espectrofotômetro Hach uv-vis, modelo DR 5000, nas amostras do efluente do reator.

Com base nas curvas experimentais obtidas foram normalizados os dados (área sobre a curva igual a 1) de acordo com a metodologia de Levenspiel (2000), resultando em curvas de distribuição do tempo de residência hidráulica (E θ) em função do tempo adimensional (θ). Após a normalização, foi possível calcular a variância (σ_{θ}^2) para cada ensaio. O ajuste das curvas experimentais de distribuição do tempo de detenção hidráulica em função do tempo adimensional foi feito utilizando os modelos teóricos uniparamétricos de dispersão, de pequena (PD) e de grande intensidade (GD) e de tanques de mistura completa em série (N-CSTR).

Na determinação das características hidráulicas foram considerados os parâmetros relacionados ao volume de zonas mortas, ocorrência de curtos-circuitos e eficiência hidráulica. A determinação desses parâmetros torna-se fundamental, uma vez que são considerados anomalias que podem afetar diretamente o sistema a ser avaliado.

O volume de zonas mortas foi determinado de acordo com a metodologia reportada por Peña et al. (2006) com base nos valores de TDH teórico e real obtidos a partir dos ensaios hidrodinâmicos e do volume total do reator.

A presença de curtos-circuitos foi baseada na metodologia de Sarathai et al. (2010) na qual é verificada a relação entre o tempo do primeiro aparecimento do traçador nas amostras do efluente do reator e seu respectivo valor de TDH teórico. Os valores obtidos foram comparados aos parâmetros estabelecidos por Thackston et al. (1987) em que os autores consideraram a ocorrência de curtos-circuitos apenas com valores iguais ou menores que 0,3.

O cálculo da eficiência também foi efetuado de acordo com metodologia de Sarathai et al. (2010), seguindo os parâmetros definidos por Persson et al. (1999) nos quais é estabelecido que valores iguais ou maiores que 0,75

indicam boa eficiência hidráulica, valores entre 0,75 e 0,5 eficiência hidráulica satisfatória e iguais ou menores que 0,5 eficiência hidráulica pobre.

Após a determinação das características hidrodinâmicas e hidráulicas os dados experimentais da variação da concentração do traçador pelo tempo foram submetidos ao teste de variância ANOVA fator único (*one-way*) com precisão de 95%, utilizando a ferramenta computacional Biostat. O intuito principal é avaliar a interferência da produção de biogás no sistema, comparando os dados obtidos da etapa II com a condição ideal correspondente a etapa I.

RESULTADOS OBTIDOS

A partir dos ensaios hidrodinâmicos realizados foi possível obter as curvas de concentração da Eosina Y em função do tempo para as duas condições operacionais como pode ser observado na Figura 2.

Figura 2: Curvas da variação da concentração de eosina Y nas amostras coletadas ao longo do tempo na - a) Etapa I (sem aeração); b) Etapa II (com aeração).

Os tempos de residência médio dos elementos do fluido no reator tipo UASB (TDH real), os valores dos parâmetros número de dispersão (D/uL) e o número de reatores (N-CSTR) em série são apresentados na Tabela 1.

Condição operacional	Ensaio	TDH	N-CSTR	D/uL (PD)	D/uL (GD)
	1	5,4	3	0,180	0,121
Sem aeração (Etana I)	2	5,8	3	0,166	0,114
(p	3	6,8	4	0,138	0,099
<u> </u>	1	5,5	2	0,266	0,162
Com aeração (Etapa II)	2	5,6	2	0,285	0,170
	3	5,4	2	0,277	0,166

Na Figura 5 são apresentadas as médias das curvas de Distribuição do Tempo de Residência (DTR).

Figura 2: Valores das curvas de DTR ao longo do tempo obtidas a partir dos ensaios de estímuloresposta dos Ensaios nas Etapas I e II – a), b) e c) 1, 2 e 3 (sem aeração); d), e) e f) 1, 2 e 3 (com aeração).

Os coeficientes de correlação obtidos com o ajuste das curvas DTR dos modelos teóricos e os dados experimentais são demonstrados na Tabela 2.

Tabela 2: Valores dos coeficientes de correlação obtidos com os ajustes dos dados experimentais aos
modelos uniparamétricos.

Condição operacional	Ensaio	N-CSTR em série	D/uL (PD)	D/uL (GD)
	1	0,971	0,818	0,516
Sem aeração (Etana I)	2	0,971	0,860	0,491
(2)	3	0,904	0,785	0,494
	1	0,964	0,768	0,081
Com aeração (Etana II)	2	0,949	0,668	-0,019
(Etapa II)	3	0,919	0,709	0,045

Na Tabela 3 são apresentados os valores referentes ao volume de zonas mortas, ocorrência de curtos-circuitos hidráulicos e eficiência hidráulica nas diferentes condições operacionais.

partir dos dados obtidos nos ensalos hidrodinamicos.				
Etapa	Ensaio	Volume de zonas mortas (%)	Ocorrência de curtos-circuitos (Ψ)	Eficiência hidráulica (λ)
	1	10	0,46296	0,5
Sem aeração (Etana I)	2	3,30	0,77586	0,8
(Etapa I)	3	0	0,51471	0,5
~ ~	1	8,30	0,09091	0,5
Com aeração (Etapa II)	2	6,70	0,08929	0,5
(Biapa II)	3	10	0,09259	0,5

Tabela 3: Determinação das características hidráulicas para as diferentes condições operacionais a partir dos dados obtidos nos ensaios hidrodinâmicos.

Os resultados obtidos a partir da análise de variância Anova fator único (*one-way*) gerados pela ferramenta estatística Biostat estão apresentados na Tabela 4.

Fontes de Variação	GL	SQ	QM
Tratamento	5	1,216	0,243
Erro	216	46	0
F	1,145	-	-
(p)	0,337	-	-

Tabela 4: Resultados obtidos na análise de variância anova fator único.

DISCUSSÕES DOS RESULTADOS

A partir dos dados experimentais, observou-se o lento decaimento da concentração do traçador ao longo do tempo em todos os ensaios, denominado de fenômeno de cauda longa por Levenspiel (2000) que provavelmente ocorreu devido à difusão do traçador no meio ou pela ocorrência de curtos-circuitos hidráulicos.

Além disso, foi possível determinar os valores do TDH real em cada ensaio realizado. Na comparação entre o TDH real e o TDH teórico a maioria dos ensaios apresentaram valores de TDH real inferiores ao teórico (valores variando entre 5,4 e 5,8) com exceção do ensaio 3 na Etapa I (TDH real de 6,8 h).

Estes valores podem ser resultado da ausência de obstáculos ao longo reator, bem como, à movimentação das bolhas de biogás que impulsionaram o traçador no sentido ascensional, favorecendo ocorrência de caminhos preferenciais.

Foi possível verificar que o modelo teórico N-CSTR em série indicou de 2 a 4 reatores em série para os ensaios realizados. Chen et al. (2015) obtiveram 2,44 reatores em série equivalente a um reator tipo UASB (2,9 L) utilizando cloreto de lítio como traçador no tratamento efluente contendo amido.

Através da análise das curvas de DTR e dos coeficientes de correlação apresentados na Tabela 2, pôde-se observar melhor ajuste dos dados experimentais realizados pelo modelo uniparamétrico de tanques de mistura completa em série (N-CSTR). Este comportamento pode ser justificado por conta da agitação das partículas ao longo do reator.

Ao comparar as condições operacionais analisadas foi possível verificar os melhores resultados na Etapa I (ausência de biogás) tanto do TDH real, bem como, dos ajustes aos modelos teóricos uniparamétricos com valores do coeficiente de correlação de 0,971, 0,971 e 0,904 para os ensaios 1, 2 e 3 para o modelo de N-CSTR, respectivamente.

Em relação aos modelos de dispersão, foram verificados melhores resultados com o ajuste dos dados pelo modelo de pequena dispersão em ambas condições. Novamente na Etapa I foram observados os melhores resultados na comparação entre as condições operacionais com valores do coeficiente de correlação de 0,818, 0,860 e 0,785 para os ensaios 1, 2 e 3, respectivamente.

Quanto às características hidráulicas foi possível observar que apenas no ensaio 3 da Etapa I não foram verificadas zonas mortas. Apesar da ausência da biomassa no sistema, a ocorrência de zonas mortas pode ser justificada pela ausência de obstáculos permitindo que o traçador saísse mais rapidamente. Nos demais ensaios notou-se maior volume de zonas mortas na Etapa II, com valores variando de 6,7% a 10% em relação ao volume total do reator. Neste caso, houve presença de zonas mortas provavelmente devido ao impulsionamento do corante para a saída do reator provocado pela simulação de bolhas.

Cruz et al. (2016) obtiveram volumes de zonas mortas correspondentes a 4% na configuração 1, 2% na configuração 2 e 3 e 3% na configuração 4 em relação ao volume total de um reator tipo UASB (160 L), considerando quatro configurações diferentes em relação à entrada do afluente utilizando a fluidodinâmica computacional (CFD).

Costa (2015) obteve volume de zonas mortas variando entre 7 a 35% em relação ao volume total ao avaliar o comportamento hidrodinâmico de seis reatores tubulares horizontais, em escala de bancada, e volume útil de 869 mL, 290 mL, 255 mL, 59 mL, 26 mL e 25 mL para os reatores 1, 2, 3, 4, 5 e 6, respectivamente, com cloreto de sódio (NaCl) como traçador.

A presença de zonas mortas foi verificada nos ensaios com TDH real inferiores ao TDH teórico. Acredita-se que nestas condições operacionais a presença das zonas mortas esteja relacionada com a diluição do traçador no meio havendo a necessidade de realização de análises químicas para comprovação desta hipótese, ou seja, não está relacionada aos espaços estagnados propriamente ditos.

Com base na Tabela 3 observou-se que os curtos-circuitos hidráulicos ocorreram em todos os ensaios na Etapa II com valores de 0,09, 0,08 e 0,09 para os ensaios 1, 2 e 3, respectivamente, provavelmente devido à movimentação das bolhas de biogás que promoveram recirculação do traçador por mais tempo no interior do reator. Sarathai et al (2010) verificaram que a maioria dos ensaios realizados apresentaram ocorrência de curtos-circuitos hidráulicos com valores variando de 0,20 a 0,34 operando um reator anaeróbio compartimentado com volume liquido de 92,4 L e utilizando o lítio como traçador.

Foi constatado que ambas condições operacionais foram classificadas como eficiência pobre com valores iguais a 0,5, o que segundo Sarathai et al (2010) pode ser considerada como reflexo da falta de distribuição uniforme do fluído no interior do reator.

Os resultados da análise estatística indicaram p-valor de 0,337 (> 0,05) na comparação dos valores de concentração do traçador ao longo do tempo nas condições estudadas, indicando que a produção de gás não interfere significativamente no desempenho deste reator tipo UASB avaliado nestas condições operacionais.

CONCLUSÕES

Nas curvas de concentração do traçador ao longo do tempo foi observado o fenômeno de cauda longa, devido a sua difusão no meio e a lenta liberação no efluente do reator.

A maioria dos ensaios apresentaram TDH real inferior em relação ao TDH teórico devido à ausência de obstáculos para o escoamento do fluido na Etapa I e à movimentação ascensional das bolhas que impulsionava o traçador ou à ocorrência de caminhos preferenciais na Etapa II.

O modelo teórico uniparamétrico N-CSTR em série apresentou o melhor ajuste dos dados das curvas DTR com os valores experimentais em todos os ensaios realizados, com 2 a 4 reatores.

O volume de zonas mortas está relacionado ao fator de diluição do traçador no meio e não aos espaços estagnados.

A baixa eficiência hidráulica observada pode estar relacionada ao grau de mistura devido à ocorrência de caminhos preferenciais.

A presença de curtos-circuitos pode estar relacionada ao padrão de mistura do traçador no interior do reator e ao TDH obtido a partir dos dados experimentais.

Na avaliação estatística foi constatada que a produção de biogás não interfere significativamente no comportamento hidrodinâmico deste reator tipo UASB e que provavelmente o tipo de traçador e demais condições operacionais possam ter interferido.

Na comparação entre as condições operacionais, o reator apresentou melhor comportamento na Etapa I simulando o comportamento de um sistema ideal.

A simulação das condições operacionais permitiu melhor compreender a hidrodinâmica e hidráulica de reatores tipo UASB. Mesmo não havendo biomassa e ação microbiana, foi possível observar que a difusão do traçador no meio possui papel importante na hidrodinâmica dos reatores.

AGRADECIMENTOS

Os autores agradecem ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Edital Universal Processo nº 474498/2012-3) pelo aporte financeiro, a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela concessão da bolsa de mestrado, ao Laboratório de Saneamento (LabSan) e ao Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA-UTFPR-CT) pela infraestrutura para desenvolvimento deste trabalho.

REFERÊNCIAS BIBLIOGRÁFICAS

- CARVALHO, K. Q de; SALGADO, M. T.; PASSIG, F. H.; PIRES, E. C. Avaliação hidrodinâmica de reator UASB submetido à variação cíclica de vazão. Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 13, n. 2, p. 226-235, 2008.
- CASTRO, F. M. S. Determinação de variáveis hidrodinâmicas em reator UASB com nova proposta de configuração do separador de fases. Dissertação (Mestrado em Recursos Hídricos e Saneamento Ambiental.) – Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2010.
- CHEN, Y.; HE, J; UM, Y; HUO, Y. C.; ZHANG, Z.; KOTSOPOULOS, T. A.; ZENG, R. J. Mathematical modeling of Upflow Anaerobic Sludge Blanket (UASB) reactors: Simultaneous accounting for hydrodynamics and bio-dynamics. Chemical Engineering Science, n.137, p.677-684, 2015.
- 4. CHERNICHARO, C. A. L de. Princípios do tratamento biológico de águas residuárias: Reatores anaeróbios. 2. ed. Belo Horizonte: UFMG, 2007.
- COSTA, D. J. L. Modelo matemático para avaliação hidrodinâmica de escoamentos em regime nãopermanente. 118 f. Tese (Doutorado em Engenharia Hidráulica de Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2015.
- CRUZ, D. B.; ARANTES, E. J.; CARVALHO, K. Q. de; PASSIG, F. H.; KREUTZ, C. GONÇALVES, M. S. Avaliação do comportamento hidrodinâmico de reator de manta de lodo e fluxo ascendente com diferentes configurações do sistema de distribuição do afluente utilizando fluidodinâmica computacional. Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 21, n. 4, p. 721-730, 2016.
- 7. LEVENSPIEL, O. Engenharia das Reações Químicas. 3 ed. São Paulo. Ed. Edgard Blücher. Ltda, 2000.
- 8. PEÑA, M. R.; MARA, d. D.; AVELLA, G. P. Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rate. Water Research, n.40, p.445-452, 2006.
- 9. PERSSON, J.; SOMES, N. L. G; WONG, T. H. F. Hydraulics efficiency of constructed wetlands and ponds. Water Science and Technology, n.40, p.291–300, 1999.
- 10. SARATHAI, Y.; KOOTTATEP, T.; MOREL, A. Hydraulic characteristics of an anaerobic baffled reactor as onsite wastewater treatment system. Journal Environmental Science, v.22 n.9, p.1319-1326, 2010.
- 11. THACKSTON, E. L.; SHIELDS JR. F. D.; SCHROEDER, P. R. Residence time distributions of shallow basins. Journal of Environmental Engineering, v.116, n.6, p.1319–1332, 1987.